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K ≡
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1GeV2 dq2 dΓ(B0 → K0μ+μ−)
dq2
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Rμe
K |SM = 1.00 ± 0.01 Rμe

K |exp = 0.846+0.060+0.016
−0.054−0.014
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• Matrix element for non-radiative decay:

• The effective Hamiltonian for   transition:b → sℓ+ℓ− Heff = 4
GF
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V*tsVtb

10

∑
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Ci(μ)𝒪i(μ)
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GFα
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7
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9 f− − Ceff

7
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• Matrix element for emission of photons from external legs:

M̃ = − eϵα(k)ū(p2)Γμ
A

(γμpμ
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2p3 . k
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•  To fix the gauge invariance of matrix element. 

•  To get the  QED correction for the decay width  and .

•  To discuss the collinear divergences and their cancellation.

𝒪(α) (B → Kℓ+ℓ−) Rμe
K

Objectives
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• The non-IR term is important to see the 
cancellation of collinear divergences.

B̃ij =
QiQjηiηj

2π {ln (
k2

maxmimj

λ2EiEj ) −
pi . pj

2 [∫
1

−1

dx
p2

x
ln ( k2

max

E2
x ) + ∫

1

−1

dx
p2

x
ln ( p2

x

λ2 )]}
Where, 2px = (1 + x)pi + (1 − x)pj 2Ex = (1 + x)Ei + (1 − x)Ej 2p′￼x = (1 + x)piηi − (1 − x)pjηj

• Charge conservation and integrating over photons 
momentum  gives:k
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obtained UV divergence is at .
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𝒪(e)
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• Proposed solution: There may be higher dimensional operators to absorb this UV 
divergence or a new formalism is required to derive CT. 

•  Discarded the leftover UV divergences. The finite part is proportional to momenta of 
particles and numerically it contributes to  .∼ 1.4 %
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• The Coulomb factor :

Ωc = ∏
i<j

−2πα
βij

1

e
−2πα

βij − 1
βij = 1 −

m2
i m2

j

(pi . pj)2where,
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Coulomb correction factor 
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−QiQjηiηj

2π [−ln ( k2
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1
4 ∫
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• The shift  :ΔRμe
K

Δi
Rμe

K
= R0μe

K (
ΔΓi

μ

Γi
μ

−
ΔΓi

e

Γi
e )
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• The QED corrections impact more massive charged 
particles significantly less compared to lighter 
particles. 

•  There is a mild dependence on the photon 
energy cut  kmax

• Correction factor for the electron is about three 
times larger than that for the muons (both are 
negative) and this difference is due to smallness 
of the electron mass compared to muon mass.

• It is sensitive to , particularly for the case of 
electrons. Choosing few degrees, this 
sensitivity essentially disappears. For muon, it is 
not that sensitive.

θcut
θcut ∼
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•  log  terms correspond to hard collinear logs.mℓ
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• We can see the explicit cancellation by choosing a 
different set of kinematical variables, 

, , and  
 and  in the rest frame of 

. With a different method results match 
with G. Isidori et. al.[JHEP 12 (2020) 104].  

t = (pB − pk)2 s = (pk + p2)2 x = (pk + k)2

q2 = (p2 + p3)2 Ek
(q + k)2

•  log  terms correspond to hard collinear logs.mℓ

•   shows deviation  from unity in the Standard 
model .
Δc

Rμe
K
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Thank you


