Soft photon QED corrections to $B \rightarrow K \ell^{+} \ell^{-}$

(Based on: Phys. Rev. D 103, 056022 (2021))
Under the supervision of Prof. Namit Mahajan

Dayanand Mishra
Email: dayanand@prl.res.in

Physical Research Laboratory

Outline

- Introduction
- Matrix elements
- Objectives
- $\mathcal{O}(\alpha)$ QED corrections
- Results
- Summary and conclusion

Introduction

- Flavour changing neutral currents (FCNCs) are both loop and CKM suppressed
\Longrightarrow important candidates to test the Standard Model

Introduction

- Flavour changing neutral currents (FCNCs) are both loop and CKM suppressed
\Longrightarrow important candidates to test the Standard Model
- $B \rightarrow K \ell^{+} \ell^{-}$allow to test the lepton flavour universality (LFU) ${ }^{1}$:

$$
\left.R_{K}^{\mu e} \equiv \frac{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} e^{+} e^{-}\right)}{d q^{2}}} \quad R_{K}^{\mu e}\right|_{S M}=1.00 \pm\left. 0.01 \quad R_{K}^{\mu e}\right|_{\text {exp }}=0.846_{-0.054-0.014}^{+0.060+0.016}
$$

[^0]
Introduction

- Flavour changing neutral currents (FCNCs) are both loop and CKM suppressed
\Longrightarrow important candidates to test the Standard Model
- $B \rightarrow K \ell^{+} \ell^{-}$allow to test the lepton flavour universality (LFU) ${ }^{1}$:

$$
\left.R_{K}^{\mu e} \equiv \frac{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} e^{+} e^{-}\right)}{d q^{2}}} \quad R_{K}^{\mu e}\right|_{S M}=1.00 \pm\left. 0.01 \quad R_{K}^{\mu e}\right|_{\text {exp }}=0.846_{-0.054-0.014}^{+0.060+0.016}
$$

- The LFU ratio (in the given kinematical range) \Longrightarrow less sensitive to uncertainties due to form factors

[^1]
Introduction

- Flavour changing neutral currents (FCNCs) are both loop and CKM suppressed
\Longrightarrow important candidates to test the Standard Model
- $B \rightarrow K \ell^{+} \ell^{-}$allow to test the lepton flavour universality (LFU) ${ }^{1}$:

$$
\left.R_{K}^{\mu e} \equiv \frac{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} e^{+} e^{-}\right)}{d q^{2}}} \quad R_{K}^{\mu e}\right|_{S M}=1.00 \pm\left. 0.01 \quad R_{K}^{\mu e}\right|_{\text {exp }}=0.846_{-0.054-0.014}^{+0.060+0.016}
$$

- The LFU ratio (in the given kinematical range) \Longrightarrow less sensitive to uncertainties due to form factors
- Strong effects are included via RGEs and form factors

[^2]
Introduction

- Flavour changing neutral currents (FCNCs) are both loop and CKM suppressed
\Longrightarrow important candidates to test the Standard Model
- $B \rightarrow K \ell^{+} \ell^{-}$allow to test the lepton flavour universality (LFU) ${ }^{1}$:

$$
\left.R_{K}^{\mu e} \equiv \frac{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} \mu^{+} \mu^{-}\right)}{d q^{2}}}{\int_{1 G e V^{2}}^{6 G e V^{2}} d q^{2} \frac{d \Gamma\left(B^{0} \rightarrow K^{0} e^{+} e^{-}\right)}{d q^{2}}} \quad R_{K}^{\mu e}\right|_{S M}=1.00 \pm\left. 0.01 \quad R_{K}^{\mu e}\right|_{\exp }=0.846_{-0.054-0.014}^{+0.060+0.016}
$$

- The LFU ratio (in the given kinematical range) \Longrightarrow less sensitive to uncertainties due to form factors
- Strong effects are included via RGEs and form factors

[^3]
Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{e f f}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathscr{O}_{i}(\mu)$

Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{e f f}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathscr{O}_{i}(\mu)$
- Most relevant operators: $\mathcal{O}_{7}, \mathcal{O}_{9} \& \mathcal{O}_{10}$

Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{e f f}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)$
- Most relevant operators: $\mathcal{O}_{7}, \mathcal{O}_{9} \& \mathcal{O}_{10}$

$$
\begin{aligned}
& o_{7}=-\frac{e}{16 \pi^{2}} \frac{2 m_{b}}{q} i\left(\bar{s} \sigma_{\mu} q^{\left.q^{q} R b\right)}\left(\bar{\eta}^{\mu} l\right),\right. \\
& o_{9}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{y} L b\right)\left(\bar{\gamma} \gamma^{\mu} l\right), \\
& o_{10}=\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} L b\right)\left(\overline{r^{\mu}} r_{s} l\right) \text {. }
\end{aligned}
$$

Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{e f f}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)$
- Most relevant operators: $\mathcal{O}_{7}, \mathcal{O}_{9} \& \mathcal{O}_{10}$
- Matrix element for non-radiative decay:

$$
M_{0}\left(B \rightarrow K l^{+} l^{-}\right)=\frac{G_{F} \alpha}{2 \sqrt{2} \pi} V_{i s}^{* *} V_{i b}\left[\left(\left\{C_{9}^{\text {eff }} f_{+}+C_{7}^{\text {eff }} \frac{2 f_{f} m_{b}}{m_{B}+m_{k}}\right\} p^{p^{\mu}}+\left\{C_{9}^{\text {eff }} f_{-}-C_{7}^{\text {eff }} \frac{2 f_{T} m_{b}}{q^{2}}\left(m_{B}-m_{k}\right)\right\} q^{\mu}\right)\left(\overline{\bar{\gamma}}_{\mu} l^{\prime}\right)-\left(C_{10} f_{+} p^{\mu}+C_{10} f_{-} q^{\mu}\right)\left(\overline{\bar{r}}_{\mu} \gamma_{5} l\right)\right]
$$

Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{\text {eff }}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)$
- Most relevant operators: $\mathcal{O}_{7}, \mathcal{O}_{9} \& \mathcal{O}_{10}$
- Matrix element for non-radiative decay:

$$
M_{0}\left(B \rightarrow K l^{+} l^{-}\right)=\frac{G_{F} \alpha}{2 \sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[\left(\left\{C_{9}^{\text {eff }} f_{+}+C_{7}^{\text {eff }} \frac{2 f_{T} m_{b}}{m_{B}+m_{k}}\right\} p^{\mu}+\left\{C_{9}^{\text {eff }} f_{-}-C_{7}^{\text {eff }} \frac{2 f_{T} m_{b}}{q^{2}}\left(m_{B}-m_{k}\right)\right\} q^{\mu}\right)\left(\bar{\gamma}_{\mu} l\right)-\left(C_{10} f_{+} p^{\mu}+C_{10} f_{-} q^{\mu}\right)\left(\bar{l}_{\mu} \gamma_{5} l\right)\right]
$$

- Matrix element for emission of photons from external legs:

$$
\begin{aligned}
\tilde{M} & =-e \epsilon_{\alpha}(k) \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \frac{\left(\gamma_{\mu} p_{3}^{\mu}+\gamma_{\mu} k^{\mu}\right)-m_{l}}{2 p_{3} \cdot k} \gamma^{\alpha} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}\right)+e \epsilon_{\alpha}(k) \bar{u}\left(p_{2}\right) \gamma^{\alpha} \frac{\left(\gamma_{\mu} p_{2}^{\mu}+\gamma_{\mu} k^{\mu}\right)+m_{l}}{2 p_{2} \cdot k} \Gamma_{A}^{\mu} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}\right) \\
& +e Q_{B} \epsilon_{\alpha}(k) \frac{2 p_{0}^{\alpha}}{2 p_{0} \cdot k} \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}-k, p_{1}\right)-e Q_{K} \epsilon_{\alpha}(k) \frac{2 p_{1}^{\alpha}}{2 p_{1} \cdot k} \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}+k\right)
\end{aligned}
$$

Where, $\quad H_{\mu}\left(p_{i}, p_{j}\right)=f_{+}\left(p_{i}+p_{j}\right)_{\mu}+f_{-}\left(p_{i}-p_{j}\right)_{\mu}$

Matrix elements

- The effective Hamiltonian for $b \rightarrow s \ell^{+} \ell^{-}$transition: $H_{e f f}=4 \frac{G_{F}}{\sqrt{2}} V_{t s}^{*} V_{t b} \sum_{i=1}^{10} C_{i}(\mu) \mathcal{O}_{i}(\mu)$
- Most relevant operators: $\mathcal{O}_{7}, \mathcal{O}_{9} \& \mathcal{O}_{10}$
- Matrix element for non-radiative decay:

$$
M_{0}\left(B \rightarrow K l^{+} l^{-}\right)=\frac{G_{F} \alpha}{2 \sqrt{2} \pi} V_{t s}^{*} V_{t b}\left[\left(\left\{C_{9}^{\text {eff }} f_{+}+C_{7}^{\text {eff }} \frac{2 f_{T} m_{b}}{m_{B}+m_{k}}\right\} p^{\mu}+\left\{C_{9}^{\text {eff }} f_{-}-C_{7}^{\text {eff }} \frac{2 f_{T} m_{b}}{q^{2}}\left(m_{B}-m_{k}\right)\right\} q^{\mu}\right)\left(\bar{\gamma}_{\mu} l\right)-\left(C_{10} f_{+} p^{\mu}+C_{10} f_{-} q^{\mu}\right)\left(\bar{l}_{\mu} \gamma_{5} l\right)\right]
$$

- Matrix element for emission of photons from external legs:

$$
\begin{aligned}
\tilde{M} & =-e \epsilon_{\alpha}(k) \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \frac{\left(\gamma_{\mu} p_{3}^{\mu}+\gamma_{\mu} k^{\mu}\right)-m_{l}}{2 p_{3} \cdot k} \gamma^{\alpha} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}\right)+e \epsilon_{\alpha}(k) \bar{u}\left(p_{2}\right) \gamma^{\alpha} \frac{\left(\gamma_{\mu} p_{2}^{\mu}+\gamma_{\mu} k^{\mu}\right)+m_{l}}{2 p_{2} \cdot k} \Gamma_{A}^{\mu} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}\right) \\
& +e Q_{B} \epsilon_{\alpha}(k) \frac{2 p_{0}^{\alpha}}{2 p_{0} \cdot k} \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \nu\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}-k, p_{1}\right)-e Q_{K} \epsilon_{\alpha}(k) \frac{2 p_{1}^{\alpha}}{2 p_{1} \cdot k} \bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right) \otimes H_{A \mu}\left(p_{0}, p_{1}+k\right)
\end{aligned}
$$

Where,

$$
H_{\mu}\left(p_{i}, p_{j}\right)=f_{+}\left(p_{i}+p_{j}\right)_{\mu}+f_{-}\left(p_{i}-p_{j}\right)_{\mu}
$$

Leptonic part	Gauge invariant
Hadronic part	Not gauge invariant
Total amplitude	Not gauge invariant

Objectives

- To fix the gauge invariance of matrix element.
- To get the $\mathcal{O}(\alpha)$ QED correction for the decay width $\left(B \rightarrow K \ell^{+} \ell^{-}\right)$and $R_{K}^{\mu e}$.
- To discuss the collinear divergences and their cancellation.

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \nu\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \nu\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

Representative diagrams of real emissions

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} \nu\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \alpha \tilde{B})+d \Gamma^{\prime}
$$

Representative diagrams of real emissions

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

Representative diagrams of real emissions

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

$$
d \Gamma_{r e a l}=d \Gamma_{0}(1+2 \alpha \tilde{B})+d \Gamma^{\prime}
$$

- The non-IR term is important to see the cancellation of collinear divergences.

Representative diagrams of real emissions

$\mathcal{O}(\alpha)$ QED corrections

Real photon emission

- The addition of a $C T\left(e\left(Q_{B}+Q_{K}\right) \xi_{A} k_{\mu}\left[\bar{u}\left(p_{2}\right) \Gamma_{A}^{\mu} v\left(p_{3}\right)\right]\right)$ is required to preserve gauge invariance

$$
d \Gamma_{r e a l}=d \Gamma_{0}(1+2 \alpha \tilde{B})+d \Gamma^{\prime}
$$

- The non-IR term is important to see the cancellation of collinear divergences.

Representative diagrams of real emissions

- Charge conservation and integrating over photons momentum k gives:

$$
\tilde{B}_{i j}=\frac{Q_{i} Q_{j} \eta_{i} \eta_{j}}{2 \pi}\left\{\ln \left(\frac{k_{\max }^{2} m_{i} m_{j}}{\lambda^{2} E_{i} E_{j}}\right)-\frac{p_{i} \cdot p_{j}}{2}\left[\int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{k_{\max }^{2}}{E_{x}^{2}}\right)+\int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{p_{x}^{2}}{\lambda^{2}}\right)\right]\right\}
$$

Where, $2 p_{x}=(1+x) p_{i}+(1-x) p_{j} \quad 2 E_{x}=(1+x) E_{i}+(1-x) E_{j} \quad 2 p_{x}^{\prime}=(1+x) p_{i} \eta_{i}-(1-x) p_{j} \eta_{j}$

Virtual photon corrections

- Due to contact term: Contain ultraviolet divergences
\Longrightarrow get cancelled for leptons but remained for charged mesons
- Our method to construct the contact term provides $\mathcal{O}(e)$ term whereas the obtained UV divergence is at $\mathcal{O}\left(e^{2}\right)$.

Virtual photon corrections

- Due to contact term: Contain ultraviolet divergences
\Longrightarrow get cancelled for leptons but remained for charged mesons
- Our method to construct the contact term provides $\mathcal{O}(e)$ term whereas the obtained UV divergence is at $\mathcal{O}\left(e^{2}\right)$.
- Proposed solution: There may be higher dimensional operators to absorb this UV divergence or a new formalism is required to derive CT.

Virtual photon corrections

- Due to contact term: Contain ultraviolet divergences
\Longrightarrow get cancelled for leptons but remained for charged mesons
- Our method to construct the contact term provides $\mathcal{O}(e)$ term whereas the obtained UV divergence is at $\mathcal{O}\left(e^{2}\right)$.
- Proposed solution: There may be higher dimensional operators to absorb this UV divergence or a new formalism is required to derive CT.
- Discarded the leftover UV divergences. The finite part is proportional to momenta of particles and numerically it contributes to $\sim 1.4 \%$.
- Evaluating virtual diagrams: $\quad M_{\text {virtual }}=M_{0}\left[1+\alpha B+\frac{\alpha}{2 \pi}\right]+M_{C T}$

- Evaluating virtual diagrams: $\quad M_{\text {virtual }}=M_{0}\left[1+\alpha B+\frac{\alpha}{2 \pi}\right]+M_{C T}$

With $\quad B_{i j}=\frac{-1}{2 \pi} Q_{i} Q_{j} \eta_{i} \eta_{j}\left[\ln \left(\frac{m_{i} m_{j}}{\lambda^{2}}\right)+\frac{1}{4} \int_{-1}^{1} d x \ln \left(\frac{p_{x}^{\prime 2}}{m_{i} m_{j}}\right)+\frac{p_{i} \cdot p_{j} \eta_{i} \eta_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{\prime 2}} \ln \left(\frac{p_{x}^{\prime 2}}{\lambda^{2}}\right)\right]$

- Evaluating virtual diagrams: $\quad M_{\text {virtual }}=M_{0}\left[1+\alpha B+\frac{\alpha}{2 \pi}\right]+M_{C T}$

With $\quad B_{i j}=\frac{-1}{2 \pi} Q_{i} Q_{j} \eta_{i} \eta_{j}\left[\ln \left(\frac{m_{i} m_{j}}{\lambda^{2}}\right)+\frac{1}{4} \int_{-1}^{1} d x \ln \left(\frac{p_{x}^{\prime 2}}{m_{i} m_{j}}\right)+\frac{p_{i} \cdot p_{j} \eta_{i} \eta_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{p_{x}^{\prime 2}}{\lambda^{2}}\right)\right]$

- The Coulomb factor :

$$
\Omega_{c}=\prod_{i<j} \frac{-2 \pi \alpha}{\beta_{i j}} \frac{1}{e^{\frac{-2 \pi \alpha}{\beta_{i j}}}-1} \quad \text { where, } \quad \beta_{i j}=\sqrt{1-\frac{m_{i}^{2} m_{j}^{2}}{\left(p_{i} \cdot p_{j}\right)^{2}}}
$$

- The total decay rate:

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \alpha \underbrace{(\tilde{\mathscr{B}}+\mathscr{B})}_{\mathscr{H}_{i j}}+\frac{\alpha}{\pi}) \Omega_{c}+d \Gamma^{\prime}
$$

- The total decay rate:

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \alpha \underbrace{(\tilde{\mathscr{B}}+\mathscr{B})}_{\mathscr{H}_{i j}}+\frac{\alpha}{\pi}) \underbrace{\Omega_{c}+d \Gamma^{\prime}}_{\text {Coulomb correction factor }}
$$

- The total decay rate:

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \alpha \underbrace{i j}_{\mathscr{H}}(\tilde{\mathscr{B}}+\mathscr{B})+\frac{\alpha}{\pi}) \Omega_{c}+d \Gamma^{\prime}
$$

With

$\left.\mathscr{H}_{i j}=\frac{-Q_{i} Q_{j} \eta_{i} \eta_{j}}{2 \pi} \left\lvert\,-\ln \left(\frac{k_{\max }^{2}}{E_{i} E_{j}}\right)+\frac{1}{4} \int_{-1}^{1} d x \ln \left(\frac{p_{x}^{2}}{m_{i} m_{j}}\right)+\frac{p_{i} \cdot p_{j} \eta_{i} \eta_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{\prime 2}} \ln \left(\frac{p_{x}^{\prime 2}}{\lambda^{2}}\right)+\frac{p_{i} \cdot p_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{k_{\max }^{2} p_{x}^{2}}{E_{x}^{2} \lambda^{2}}\right)\right.\right] \mid$

- The total decay rate:

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \underbrace{(\tilde{\mathscr{B}}+\mathscr{B})}_{\mathscr{H}_{i j}}+\frac{\alpha}{\pi}) \Omega_{c}+d \Gamma^{\prime}
$$

With

$\left.\mathscr{H}_{i j}=\frac{-Q_{i} Q_{j} \eta_{i} \eta_{j}}{2 \pi} \left\lvert\,-\ln \left(\frac{k_{\max }^{2}}{E_{i} E_{j}}\right)+\frac{1}{4} \int_{-1}^{1} d x \ln \left(\frac{p_{x}^{2}}{m_{i} m_{j}}\right)+\frac{p_{i} \cdot p_{j} \eta_{i} \eta_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{\prime 2}} \ln \left(\frac{p_{x}^{2}}{\lambda^{2}}\right)+\frac{p_{i} \cdot p_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{k_{\max }^{2} p_{x}^{2}}{E_{x}^{2} \lambda^{2}}\right)\right.\right](\underset{1}{ }$

The correction factor $\Delta^{i}(O(\alpha)): \quad \Delta^{i}=\left(\frac{d^{2} \Gamma_{0}}{d s d q^{2}}\right)^{-1}\left(\frac{d^{2} \Gamma^{i}}{d s d q^{2}}\right)-1$

- The total decay rate:

$$
d \Gamma_{\text {real }}=d \Gamma_{0}(1+2 \alpha \underbrace{(\tilde{\mathscr{B}}+\mathscr{B})}_{\mathscr{H}_{i j}}+\frac{\alpha}{\pi}) \Omega_{c}+d \Gamma^{\prime}
$$

With

$$
\mathscr{H}_{i j}=\frac{-Q_{i} Q_{j} \eta_{i} \eta_{j}}{2 \pi} \left\lvert\,-\ln \left(\frac{k_{\max }^{2}}{E_{i} E_{j}}\right)+\frac{1}{4} \int_{-1}^{1} d x \ln \left(\frac{p_{x}^{2}}{m_{i} m_{j}}\right)+\frac{p_{i} \cdot p_{j} \eta_{i} \eta_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{p_{x}^{2}}{\lambda^{2}}\right)+\frac{p_{i} \cdot p_{j}}{2} \int_{-1}^{1} \frac{d x}{p_{x}^{2}} \ln \left(\frac{k_{\max }^{2} p_{x}^{2}}{E_{x}^{2} \lambda^{2}}\right)\right.
$$

- The correction factor $\Delta^{i}(\mathcal{O}(\alpha)): \quad \Delta^{i}=\left(\frac{d^{2} \Gamma_{0}}{d s d q^{2}}\right)^{-1}\left(\frac{d^{2} \Gamma^{i}}{d s d q^{2}}\right)-1$

The shift $\Delta_{R_{K}^{\mu e}}: \left.\quad \Delta_{R_{K}^{\mu e}}^{i}=R_{K}^{0 \mu e}\left(\frac{\Delta \Gamma_{\mu}^{i}}{\Gamma_{\mu}^{i}}-\frac{\Delta \Gamma_{e}^{i}}{\Gamma_{e}^{i}}\right) \right\rvert\,$

Figure 1: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K e^{+} e^{-}$.

Figure 2: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K \mu^{+} \mu^{-}$.

Results

Figure 1: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K e^{+} e^{-}$.

Figure 2: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K \mu^{+} \mu^{-}$

- Correction factor for the electron is about three times larger than that for the muons (both are negative) and this difference is due to smallness of the electron mass compared to muon mass.

Results

Figure 1: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K e^{+} e^{-}$.

Figure 2: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K \mu^{+} \mu^{-}$.

- Correction factor for the electron is about three times larger than that for the muons (both are negative) and this difference is due to smallness of the electron mass compared to muon mass.
- The QED corrections impact more massive charged particles significantly less compared to lighter particles.

Results

Figure 1: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K e^{+} e^{-}$.

Figure 2: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K \mu^{+} \mu^{-}$

- Correction factor for the electron is about three times larger than that for the muons (both are negative) and this difference is due to smallness of the electron mass compared to muon mass.
- The QED corrections impact more massive charged particles significantly less compared to lighter particles.
- There is a mild dependence on the photon energy cut $k_{\text {max }}$

Results

Figure 1: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K e^{+} e^{-}$.

Figure 2: $\mathcal{O}(\alpha)$ corrections to charged $B \rightarrow K \mu^{+} \mu^{-}$

- Correction factor for the electron is about three times larger than that for the muons (both are negative) and this difference is due to smallness of the electron mass compared to muon mass.
- The QED corrections impact more massive charged particles significantly less compared to lighter particles.
- There is a mild dependence on the photon energy cut $k_{\text {max }}$
- It is sensitive to $\theta_{\text {cut }}$ particularly for the case of electrons. Choosing $\theta_{\text {cut }} \sim$ few degrees, this sensitivity essentially disappears. For muon, it is not that sensitive.

(0.18:

Figure 3: $\mathcal{O}(\alpha)$ corrections to charged $R_{k}^{\mu e}$.

Figure 3: $\mathcal{O}(\alpha)$ corrections to charged $R_{k}^{\mu e}$.

- $\Delta_{R_{K}^{\mu e}}^{c}$ shows deviation from unity in the Standard model .

Figure 3: $\mathcal{O}(\alpha)$ corrections to charged $R_{k}^{\mu e}$.

- $\Delta_{R_{K}^{\text {ue }}}^{c}$ shows deviation from unity in the Standard model .

Figure 4: $\log m_{\ell}$ terms

Figure 3: $\mathcal{O}(\alpha)$ corrections to charged $R_{k}^{\mu e}$.

- $\Delta_{R_{K}^{\mu e}}^{c}$ shows deviation from unity in the Standard model.
- $\log m_{l}$ terms correspond to hard collinear logs.

Figure 3: $\mathcal{O}(\alpha)$ corrections to charged $R_{k}^{\mu e}$.

- $\Delta_{R_{K}^{\mu e}}^{c}$ shows deviation from unity in the Standard model.
- $\log m_{l}$ terms correspond to hard collinear logs.
- We can see the explicit cancellation by choosing a different set of kinematical variables,
$t=\left(p_{B}-p_{k}\right)^{2}, s=\left(p_{k}+p_{2}\right)^{2}, x=\left(p_{k}+k\right)^{2}$ and $q^{2}=\left(p_{2}+p_{3}\right)^{2}$ and E_{k} in the rest frame of $(q+k)^{2}$. With a different method results match with G. Isidori et. al.[JHEP 12 (2020) 104].

Figure 4: $\log m_{\ell}$ terms

Summary and Conclusions

- We have fixed the contact term demanding the gauge invariance of the matrix amplitude.

Summary and Conclusions

- We have fixed the contact term demanding the gauge invariance of the matrix amplitude.

Observ.	$k_{\max }$ $\left(\theta_{\text {cut }}=3^{\circ}\right)$	Correction $($ in \% $)$
Δ_{e}^{c}	125 MeV	~ 14
Δ_{μ}^{c}	125 MeV	~ 5
$R_{k^{\mu e}}$	125 MeV	~ 8

Summary and Conclusions

- We have fixed the contact term demanding the gauge invariance of the matrix amplitude.

Observ.	$k_{\max }$ $\left(\theta_{\text {cut }}=3^{\circ}\right)$	Correction $($ in \% $)$
Δ_{e}^{c}	125 MeV	~ 14
Δ_{μ}^{c}	125 MeV	~ 5
$R_{k^{\mu e}}$	125 MeV	~ 8

- The corrections are found to be negative.
- The differential decay rate is found to be independent of IR regulator used and thereby showing the cancellation of soft divergences.
- The effect of collinear divergence is taken care by choosing $\theta_{c u t} \sim$ few degrees. We have also shown the cancellation of hard collinear divergences with the proper choice of kinematical variables.

Summary and Conclusions

- We have fixed the contact term demanding the gauge invariance of the matrix amplitude.

Observ.	$k_{\max }$ $\left(\theta_{\text {cut }}=3^{\circ}\right)$	Correction $($ in \% $)$
Δ_{e}^{c}	125 MeV	~ 14
Δ_{μ}^{c}	125 MeV	~ 5
$R_{k^{\mu e}}$	125 MeV	~ 8

- The corrections are found to be negative.
- The differential decay rate is found to be independent of IR regulator used and thereby showing the cancellation of soft divergences.
- The effect of collinear divergence is taken care by choosing $\theta_{c u t} \sim$ few degrees. We have also shown the cancellation of hard collinear divergences with the proper choice of kinematical variables.

Thank you

[^0]: ${ }^{1}$ LHCb collaboration, Test of lepton universality in beauty-quark decays, 2103.11769.

[^1]: ${ }^{1}$ LHCb collaboration, Test of lepton universality in beauty-quark decays, 2103.11769.

[^2]: ${ }^{1}$ LHCb collaboration, Test of lepton universality in beauty-quark decays, 2103.11769.

[^3]: ${ }^{1}$ LHCb collaboration, Test of lepton universality in beauty-quark decays, 2103.11769.

